G5291 Advanced Data Analysis

Final Project: Stack Overflow Q&A Analysis

Group 2

Duanhong Gao (dg2896)
Yi Jian (yj2376)
Jingwei Li (j14549)
Aoyuan Liao (al3468)
Hanging Shi (hs2871)
Jia Wang (jw3315)
Xiangyu Wu (xw2423)

Yutong Yang (yy2624)
Wanyi Zhang (wz2323)

Columbia University
Fall 2016

Contents

1 Introduction|

[3.2 Methodology|

3.2.1 Exploratory Data Analysis|

[3.2.2 Statistical Modelling| . .

[3.2.3 Tag Recommendation System|.

4_Results
4.1 Data Analysis Results|

4.2 Tag Recommendation System Results|,

5 Conclusion|

[5.1 Conclusion of Data Analysis| .

[p.2 Conclusion of Topic Modelling|
[A_Reference]

12

14
14
14

15

Chapter 1

Introduction

Stack Overflow Q&A Analysis

To begin with, we try to analyze the differences between R and Python questions in
terms of popularity, hot topics, response time, and the relationship between scores of the
question and its answers.

The second part we try to predict question scores based on some features. From part
1’s conclusion, we all hope that our problems can get higher score so that it can be resolved
better. But how to make it happen? Here we are interested in two response variables: the
score of the question and whether a question gets resolved.Then we applied exploratory
data analysis to the score and time then we fitted logistic regression on score and time
respectively. We also did xgboost to find out important features towards score and time.

The last part of our project aims to use machine learning methods to recommend tags
for each question asked on Stack Overflow. We use Latent Dirichlet allocation (LDA) to do
topic modeling to all R questions from Stack Overflow, which are described in full detail
in the Date Description section. Then for each test question we apply k-nearest neighbors
(k-NN) algorithm and ranking of the numbers of tags to recommend tags, finally, to make
our result more accurate, we add weights to those tags which appear in the question
bodies. The rest of the paper is organized as follows. Section III illustrates the rationale,
which is the algorithms we choose and the reasons. Section IV presents the results of
recommendation, including the plot of our topics and the most common words in each
topic, a sample list of comparison of the actual tags and recommended tags, and the error
rate of the whole test data set. Section V draws the conclusion, which states that our
method is doing a pretty good job in recommending tags for questions. Also, we suggest
possible improvement for the research in the end.

Chapter 2

Objectives

Our graduation is coming soon. As students in statistics, we know some of us are seeking
for a career in data science. However, looking through long description of data scientist
position, we found that data scientists seem to be highly rare ‘awesome nerds’- those who
embody the perfect skillsets of math and stats, coding, and communication. We, statstical
students, don’t need to worry about stats knowledge. However, the shortcoming for most
of us, coding, is keeping us back at nerds’. Our motivation is to help us make most of
Stack Overflow, improve coding skills and rush towards ‘awesome nerds’. Here we want
to answer three problems raised by the dataset, which are also our objectives.

1.What are the differences between R questions and Python Questions?
2.How can we increase the probability that we got acceptable answer for our question?

3.Would it be possible to recommend paired and regularized tags automatically?

Chapter 3

Materials & Methods

3.1 Data Source

We explored two datasets provided by Stack Overflow on Kaggle Dataset. We have two
sets of data, one contains questions and answers from Stack Overflow that are tagged with
ther tag, another one contains questions and answers from Stack Overflow that are tagged
with thepython tag. Below is data description for first two parts of this project.

e R Questions from Stack Overflow
— Questions contains the title, body, creation date, score, and owner ID for each
R question.

— Answers contains the body, creation date, score, and owner ID for each of the
answers to these questions. The Parentld column links back to the Questions
table.

- Tags contains the tags on each questionbesidesthe R tag.
e Python Questions from Stack Overflow
— Questions contains the title, body, creation date, score, and owner ID for each

Python question.

— Answers contains the body, creation date, score, and owner ID for each of the
answers to these questions. The Parentld column links back to the Questions
table.

- Tagscontains the tags on each questionbesidesthe Python tag.
In the last part of our project, we only use R Questions from Stack Overflow data set

to do tag recommendation, since the methodology is the same for different data sets. And
we only use Questions table and Tags table in this data set. For Tags table, we delete

3.2. Methodology 5

tags which show up less than five times during the whole time period. We randomly split
Questions table into training (80%) and testing (20%) sets.

3.2 Methodology

3.2.1 Exploratory Data Analysis
¢ R & Python Questions Volumes per year

e Hot Topics Comparison
e Response Time Comparison

e Answer Score EDA

Firstly, we want to draw a brief picture about how the volumes of the two languages
questions varies over the last 8 years. We calculate the questions asked in per year in R
and Python respectively. Then we visualize the hottest topics in two languages by word
clouds. The word clouds show those hottest topics with their size corresponding to their
frequency of being asked. Then. we look at the time it takes to have the first answer after
a question posted. We apply exploratory data analysis to answer score and time variables
to have a big picture of them.

3.2.2 Statistical Modelling

e Robust Linear Regression
e Logistic Regression

e Gradient Boosting Trees: XGBoost

Because of the departure of normality and outliers, we use robust linear regression to
model the relationship between the score of each question and its corresponding highest
answer’s score.

From the histogram of the questions” scores, we can see that they are highly skewed.
Based on that, we define that a question gets resolved when there is a corresponding
answer with at least 3 scores, which is the 3rd quantile of the answer score distribution.
Naturally, we applied a logistic regression to predict question’s label. It shows that if the
question score gets higher, the question will be more likely to get solved. Therefore, we
can label each question as 0 or 1; 0 being a question without good answers and 1 being a
question with good answers.

Due to the departure from normality, we appeal to non-parametric method, power-
ful XGBoost to find out what are the important features towards score and time. And

3.2. Methodology 6

we divided them into groups according to their importance.Meanwhile, we extract some
features from the raw dataset.Then, we train the model on these features. After tuning
parameter, we got a cross-validated MSE for the best model of R Questions as nearly 8.2
and MSE for python questions as 19.1. From the importance matrix, we can see that, for
R questions, sum_tag_freq, max_tag_freq, code_length are most relevant to the question
score. And there is a gap of information gains between features in cluster 1 and features
in cluster 2. As for Python questions, the most important factors change. Title length is
inserted into the front row.

3.2.3 Tag Recommendation System

In order to recommend tags for questions, we need to find the most similar questions in
training set, and choose the most common tags as recommendations. For each test ques-
tion, we first do LDA topic modeling to cluster questions into 50 topics, and then use
k-NN to find the nearest 20 questions to the test question, and rank the tags belonging to
these questions. After that, we look through the body of the test question, add weights to
tags which show up in the question body. Finally, we rank these weighted tags again and
choose the most likely 6 tags as recommendations. More specifically, we use the following
steps to do recommendation.

To begin with, we deal with our data as described in Section II to obtain the useful data
for our algorithms. After this, we have a training data set and a test data set of questions.
Secondly, we apply LDA to the whole question data set, and cluster these questions into
50 topics.

Thirdly, to find the nearest questions for each test question, we use k-NN algorithm
to all training questions belonging to the same topic as that test question with a distance
defined according to Jaccard index, which is the size of intersection divided by the size of
the union of unique words in test question body and unique words in training set question
bodies. By doing this, we obtain 20 nearest questions to each test question.

Finally, we rank the tags belonging to the 20 chosen questions. To improve our pre-
diction accuracy, we compare these ranked tags with the body of the test question, add
weights to each tag which appears in question body because they are more likely to be
chosen as tags. Then we rank the weighted tags again, and keep the top 6 as recommen-
dations for customers to choose from.

As for the accuracy of our recommendation, we calculate an error rate using a mea-
surement that our recommendation is right as long as one of the actual tag appears in
recommended tags.

Chapter 4

Results

4.1 Data Analysis Results

In this part, we try to analyze the differences between R and Python questions in terms of
popularity, hot topics, response time, and the relationship between scores of the question
and its answers.

¢ R & Python Questions Volumes per year

140000 Py&R Questions Volume Change Over Time

2

120000

100000

80000

60000

questions volume

40000

20000

0
2008 2009 2010 2011 2012 2013 2014 2015 2016
year_asked

Figure 4.1: R & Python Questions Volumes per year

The amount of questions of R and Python changes in a similar pattern from year
2008 to 2016. In the first eight years, questions for both grew dramatically while

4.1. Data Analysis Results 8

slight decreased in 2016. Despite the similar pattern, Python questions become more
popular since it has a significantly huger incremental. Python questions are asked
more than 130k in 2016, which is more than three times as large as that of R questions.

e Hot Topics Comparison

matrix function

olot2 : django

string jinux

o =
3 E-Q gultltthreadlng
(2] —
> < 25 %= dICclionaryarrays
S merge 2 Xlls knitryvector dplyr 2005 mvsal y
Jdsubset© plyr lapply 5 ga osx 5;]1% windows .
S pyq
DL 4= ison selenium
= @

scipy _javascript 6

] h lass
rstudio & glist@ 19rePh regex € csv flask -.J)a:

lOOPeSgreisn “758-'_' python_z 7_*‘

rmarkdown django-models sglalchemy

tlme-serlesg pygame
it pandas
shiny python-3.x

numpy
google-app-engine

o

data.table

Figure 4.2: Hot Topics Comparison

We visualized the hottest topics in two languages by word clouds. The word clouds
show those hottest topics with their size corresponding to their frequency of being
asked. For R questions, ggplot2, dataframe, and shiny are among the hottest topics,
which are mainly about data visualization and data structures. While for Python,
it's Django, Numpy, Pandas, and Matplotlib that are among the hottest, which are
mainly about website framework and data structures. Obviously, Python questions
have more applicable fields other than data related ones. Meanwhile, both questions
show a popularity concerning data manipulation.

e Response Time Comparison

Answers posted with time elapses_R Answers posted with time elapses_Python

Answers Frequency
50000 100000 150000

Answers Frequency
50000 100000 150000

%

T T 1 T T T T 1
2 3 4 [1 2 3 4

Time_hour Time_hour

o

Figure 4.3: Response Time Comparison

4.1. Data Analysis Results 9

##
##
##
##
Max
##
460

We also look at the time it takes to have the first answer after a question posted. The
mean time is 48 days for R, while 70 days for Python. And the median time is about
45 minutes for R, while 29 minutes (converted from .02 day NEED COFIRMATIONSs)
for Python.

Robust Linear Regression
In our case, the robust linear regression is done by iterated re-weighted least squares
(IRLS). And We use the Huber weights as the weight function. cases with a large
residuals tend to be down-weighted compared to all weighted as 1 in the Ordinary
Least Squares method.

Call: rlm(formula = python_agg$Score.y ~
Call: rlm(formula = r_agg$Score.y ~ r_agg$Score) python_agg$Score)
Residuals: ## Residuals:

Min 10 Median 30 ## Min 10 Median 30

Max
-555.89915 -1.01373 -0.01373 1.05344 ## -966.6626 -0.9064 0.0936 1.2001
.77894 2270.8020

##
Coefficients: ## Coefficients:

Value Std. Error t value ## Value std. Error t value
(Intercept) 1.0137 0.0050 202.6034 ## (Intercept) 0.7999 0.0026 302.0202
r_agg$Score 0.9328 0.0005 1748.1825 ﬁﬁ python_agg$Score 1.1065 0.0001 8609.0415
Residual standard error: 1.503 on 124738 degrees ## Residual standard error: 1.621 on 539236 degrees
freedom of freedom
Figure 4.4: Robust Linear Regression

Looking into the data, we find clear positive linear relationship between the ques-
tion’s score and its highest rated answer’s score. By fitting robust linear regression,
we have two models for R and Python respectively.Based on those two models, you
probably will get higher scores by answering popular questions within those two
categories and by answering a Python question if choosing across two categories.
Answer Score EDA

R and python answers summary:

4.1. Data Analysis Results 10

Min. 1st Qu. Median Mean 3rd Qu. Max

-38.000 0.000 1.000 3.028 3.000 8384.000

count
count

2 40 40 20 0 20 40 60
RAscore PAscore

Figure 4.5: R and python answers summary

Based on scores of answers, we choose the good answer threshold = 3, the 3rd quan-
tile.

e Label Questions
Label =1, questions get good answers, Label = 0, otherwise.

R Questions: Total number of questions is 147071. 46435 of them get acceptable an-
swers while 100636 of questions haven’t got an acceptable answer.

Python questions: Total number of questions is 607276.177099 of them get acceptable
answers while 430177 of questions havent’ got an acceptable answer.

o Logistic Regression
Label prediction: Split data into train(80%) and test(20%), do logistic regression, cal-
culate prediction accuracy.

R Questions: Prediction Accuracy = 0.7927178;

4.1. Data Analysis Results 11

Estimate Std.Error z value Pr(>abs(z))
(Intercept) -1.7259480 0.009928074 -173.8452 0
Score 0.6181663 0.004818347 128.2943 0

Figure 4.6: Label prediction for R Questions

Python Questions: Prediction Accuracy = 0.7923346

Estimate Std.Error z value Pr(>abs(z))
(Intercept) -1.7462727 0.004808411 -363.1704 0
Score 0.5649856 0.002307515 244.8459 0

Figure 4.7: Label prediction for Python Questions

e Gradient Boosting Trees: XGBoost
Score ~ tag_count +max_tag_freq+sum_tag_freq+ body_length + titlejength 4 body_word_count +
title_word_count + code_blocks_count + code_commentscount + url_count +img_count +
code_length + comments_length

R Questions: MSE = 8.2; Python Questions: MSE = 19.1

Feature importance Feature importance

max_tag_freq=

sum_tag_freq-

Cluster
® @ 1
8 Cluster 8
2 12 M-
3 3
w .2 w .3
4
url_count
img_count
de_comments_count img_count
0.00 5 010 0 0.20 01 02
ain Gain

Figure 4.8: Feature importance for R&Python

12

4.2. Tag Recommendation System Results

4.2 Tag Recommendation System Results

We use a visualization tool (Figure 1) to visualize our topic model. To use it, click a circle in
the left panel to select a topic, and the bar chart in the right panel will display the 30 most
relevant terms for the selected topic, where the definition of relevance of a term to a topic is

log(p(term|topic)) + (1 — A)log(p(term|opic)/p(term))
for a given weight parameter, 0 < A <1
The red bars represent the frequency of a term in the chosen topic (proportional to p(term|topic)),
and the blue bars represent a term’s frequency across the entire corpus (proportional to

p(term)). The area of the circles depends on each topic’s overall prevalence.
Change the value of A to adjust the term rankings — small values of A (near 0) highlight
potentially rare, but exclusive terms for the selected topic, and large values of A (near 1)

highlight frequent, but not necessarily exclusive, terms for the selected topic.

Selected Topic: 1 Frevious Topic | NextTopic Clear Topic Slide to adjust relevance metric:2)
| |

A=1 00 02 04 08 08 10

Top-30 Most Relevant Terms for Topic 1 (12.3% of tokens)

Intertopic Distance Map (via multidimensional scaling)
0 50,000 100,000 150,000 200,000

1®
want I

Overall term frequency
2% I Estimated tem frequency within the selected topic:
1. salioncy({tarm w) = frequancyiw) * [sum_t p(t | w) * laglp(t | wiipitil] for topics 1 see Chuang et al (2012)
2. redevance(term w | tapic £) = A° piw | 1) + (1 - A) * piw | tip(w); see Sievert & Shidey (2014)

Marginal topic distibution

#

0%
Figure 4.9: visualization and interpretation of topics

Remark: The layout of LDAvis, with the global topics (50 topics in our case) view on
the left, and the term barcharts (with topic 1 selected) on the right. Linked selections allow

4.2. Tag Recommendation System Results

users to reveal aspects of the topic-term relationships compactly.

We run our algorithms and predict tags for the test set. There are some sample of our

recommendation results listed in table below.

Body

Actual Tags

Recommend Tags

[struggling, developing, bubble, chart,
plotly...

[plotly]

[plotly, plot, size, python, shiny, googlevis]

[plotting, stacked, bar, graph, use, geom,
tex...

[ggplot2, geom-text]

[ggplot2, graph, geom-bar, geom-text,
datafram...

[two, data, frame, df, df, ncol, nrow, col,
co...

[dataframe]

[dataframe, row, plyr, list, for-loop, vector]

[two, data, frames, dput, data, frames,
given,...

[search, data-
manipulation]

[time, subset, date, matching, match,
coordina...

[time, series, climate, data, years, base,
plo...

[ggplot2, time-series,
200]

[plot, ggplot2, zoo, line, time-series,
smooth...

[trying, modify, values, column, rows,
specifi...

[dplyr]

[dplyr, dataframe, range, split, tidyr, string]

[struggling, hours, get, match, replace,
gsub,...

[regex, gsub]

[regex, gsub, string, stringr, text, quotes]

[want, make, curved, text, around, ggplot,

[dataframe, ggplot2]

[ggplot2, plot, bar-chart, geom-bar,

id, ...

COoO... dataframe...

[trouble, functions, tried, vectorize, [integrate] [function, integrate, integration, package,
functio... 9 pl...

[simple, dataframe, two, vectors, speed, [subset] [dataframe, apply, subset, rows, function,

con...

Figure 4.10: A sample of comparison between actual tags and recommended tags

13

After prediction, we calculate an error rate as a measure of goodness of our model
and the error rate is calculated using method described in Section III. The error rate is
27%, which is a pretty low error rate, since in many recommendations, although we don’t
recommend the exact same tags as the actual tags but the recommended tags are strongly
related to the questions and actual tags.

Chapter 5

Conclusion

5.1 Conclusion of Data Analysis

To sum up, Python questions are more popular and more diverse than R questions. Thus,
generally it takes less time for Python questions to be answered. In both categories, there is
a positive relationship between between the question’s score and its highest rated answer’s
score. And it tends to be have a higher score for the answer of a more popular question.
We are confident that whether a question is solved or not depends on the question’s score,
and as we built a model to predict question scores, we can infer that some text features
are relevant to the question’s outcome. Our suggestion is to try to tag your questions
with some popular and regularized tags and control your codes’ length and title’s length
short included in your question. Popular tags and brief description will make you a stack
Overflow star and you don’t need to worry about your programming homework anymore.

5.2 Conclusion of Topic Modelling

In short, we use LDA, k-NN algorithms and a weighting technique to do tags recommen-
dation, which is very useful in real world. Now, all tags for questions on Stack Overflow
are added by customers themselves, Stack Overflow only recommends tags after customers
input some letters of the tags they are adding. But what we do in this project can help
add tags on questions automatically after the questions are finished. It's very helpful for
all customers, especially for customers who don’t know how to add tags very well. And
our recommendations are usually right and suitable due to the low error rate.

Further research should be directed towards the application of our model, and improv-
ing the accuracy of our recommendation by correcting details in our algorithms, such as,
improving our weighting technique and learning more about the objects which we add
weights on.

14

Appendix A

Reference

Here is the reference we used:

1.Ralf Krestel, Peter Fankhauser, Wolfgang Nejdl. Latent dirichlet allocation for tag
recommendation, Proceedings of the third ACM conference on Recommender systems,
October 23-25, 2009.

2.Yang Song , Ziming Zhuang , Huajing Li , Qiankun Zhao , Jia Li , Wang-Chien Lee ,
C. Lee Gile. Real-time automatic tag recommendation, Proceedings of the 31st annual in-
ternational ACM SIGIR conference on Research and development in information retrieval,
July 20-24, 2008.

3.Ralf Krestel, Peter Fankhauser. Tag Recommendation using Probabilistic Topic Mod-
els, 2009.

4 Nikolas Landia, Sarabjot Singh Anand. Personalised Tag Recommendation, 2009.

15

	Front page
	Contents
	1 Introduction
	2 Objectives
	3 Materials & Methods
	3.1 Data Source
	3.2 Methodology
	3.2.1 Exploratory Data Analysis
	3.2.2 Statistical Modelling
	3.2.3 Tag Recommendation System

	4 Results
	4.1 Data Analysis Results
	4.2 Tag Recommendation System Results

	5 Conclusion
	5.1 Conclusion of Data Analysis
	5.2 Conclusion of Topic Modelling

	A Reference

